SPECIAL QUESTION PAPER 2016

Class: XII ${ }^{\text {TH }}$ STD Subject:MATHEMATICS Marks: 200 Time: 3:00 hrs.

SECTION - A

($40 \times 1=40$)
(i) Answer all the questions. (ii) Choose and write the correct answer.

1. The rank of the matrix is $\left[\begin{array}{cc}2 & -4 \\ -1 & 2\end{array}\right]$ is
(a) 2 (b) 1
(c) 3
(d) 4

2. If I is the unit matrix of order n, where $\mathrm{k} \neq 0$ is a constant, किen $\operatorname{adj}(k I \delta$
(a) $k^{n}(\operatorname{adj} I)$
(b) $k(\operatorname{adj} I)$
I) (c) $k^{2}(\operatorname{adj} I)($
(d) k^{n-1} (adj $\left.I\right)$
3. If A and B are matrices conformable to multiplication then B$)$
(a) $A^{T} B^{T}(b) B^{T} A^{T}$
(c) AB
(d) BA
4. $p(A) \neq p[A, B]$ then the system is
(a) consistent and has infinitely many solution (b) solution (c) consistent (d) inconsistent
5. The area of the parallelogram having a diagon $3 \vec{i}+3$ and a side $\vec{i}-3 \vec{j}+4 \vec{k}$ is
(a) $10 \sqrt{3}$
(b) $6 \sqrt{30}$
(c) $\frac{3}{2} \sqrt{38}$
6. The following two lines are $\frac{x-1}{2}=\frac{y-1}{-1}=\frac{z}{1}$ and $\frac{x-2}{3} \neq \frac{y-1}{-5}=\frac{z-1}{2}$
(a) parallel
(b) intersectin
(a) 8
(d) perpendicular
7. The angle between two vectors \vec{a} and \vec{b} if $|\vec{d} \times \vec{b}|=\vec{a} \cdot \vec{b}$ is
(a) $\frac{\pi}{4}$
(b) $\frac{\pi}{3}$
(c) $\frac{\pi}{6}$
(di) $\frac{\pi}{2}$)
8. The non-parametric vector equatron plane passing through a point whose P.V is \vec{a} and parallel to \vec{u} and \vec{v}
(a) $[\vec{r}-\vec{a}, \vec{u}, \vec{v}]=0$
(b)
$\vec{v}=0$
(c) $[\vec{r} \vec{a} \vec{u} \times \vec{v}]=0$
(d) $[\vec{a} \vec{u} \vec{v}]=0$
9. If $m \vec{l}+2 \vec{\jmath}+\vec{k}$ and $4 \vec{\imath}-1+2 \vec{j}$ are perpendicular then m is
(a) -4
(b) 8
(c) 4
(d) 12
10. If $\vec{a}, \vec{b}, \vec{c}$ are rilht handed triad of mutually perpendicular vectors of magnitude $\mathrm{a}, \mathrm{b}, \mathrm{c}$ then the wal ne or $\{\vec{a} \vec{b} \vec{c}]$ is
(a) $a^{2} b^{2} c^{2}$
(b) 0%
(c) $\frac{1}{2} a b c$
(d) $a b c$
11. If $z_{\mathrm{n}}=\cos \frac{\mathrm{d}}{3} \sqrt{3}+i \sin \frac{n \pi}{3}$ then $z_{1} z_{2} \ldots z_{6}$ is
(a) 1
(c) i
(d) $-i$
12. If the ampitude of a complex number is $\pi / 2$ then the number is
(a) Purely imaginary(b) purely real (c) 0 (d) neither real nor imaginary
13. LTe mumber of values of $(\cos \theta+\sin \theta)^{p / q}$ where p and q are non-zero integers Apritupeto each other is
(a) p
(b) q
(c) $\mathrm{p}+\mathrm{q}$
(d) $\mathrm{p}-\mathrm{q}$

If ω is a cube roots of unity then
(a) $\omega^{2}=1$
(b) $1+\omega=0$ (c) $1+\omega+\omega^{2}=0$
(d) $1+\omega-\omega^{2}=0$
5. The vertex of the parabola $x^{2}=8 y-1$ is
(a) $\left(-\frac{1}{8}, 0\right)$
(b) $\left(\frac{1}{8}, 0\right)$
(c) $\left(0, \frac{1}{8}\right)$
(d) $\left(0, \frac{1}{8}\right)$
16. The asymptotes of the hyperbola $36 y^{2}-25 x^{2}+900=0$ are
(a) $y= \pm \frac{6}{5} x$
(b) $y= \pm \frac{5}{6} x$
(c) $\mathrm{y}= \pm \frac{36}{25} x$
(d) $y= \pm \frac{25}{36} x$
17. The equations of the major and minor axes of $4 x^{2}+3 y^{2}=12$ are
(a) $x=\sqrt{3}, y=0$
(b) $x=0, y=0$ (c) $x=-\sqrt{3}, y=0$
(d) $x=0, y=$
18. The equation of chord of contact of tangents from the $(2,4)$ to the ellipse $2 x$
 $=20 \mathrm{is}$
(a) $x-5 y+5=0$
(b) $5 x-y+5=0$
(c) $x+5 y-5=0$
(d) $5 x-y$
(c) $x+5 y-5=0$
pse $x x^{2}+5 y^{2}$
$5 y^{2}$
c $5 x-y-1=0$
19. For the curve $x=e^{\mathrm{t}} \cos t ; y=e^{\mathrm{t}} \sin t$ the tangent line is parallel to the x axis when t is equal to
(a) $-\frac{\pi}{4}$
(b) $\frac{\pi}{4}$
(c) 0
(d) $\frac{\pi}{2}$
20. $\lim _{x \rightarrow \infty} \frac{a^{x}-b^{x}}{c^{x}-d^{x}}$
(a) ∞
(b) 0
(c) $\log \frac{a}{b}$
(d) $\frac{\log (a / b)}{\log (c / d)}$
21. $\lim _{x \rightarrow 0} \frac{x}{\tan x}$ is
(a) 1
(b) -1
(c) 0
 $a=0, \mathrm{~b}=1$ is
(a) -1
(b) 1
(c) 0
23. If $u=x^{y}$ then $\frac{\partial u}{\partial x}$ is equal to
(a) $y x^{y-1}$
(b) $u \log x$
(c) $u(\log y)$
(d) $x y^{y-1}$
24. The curve $\mathrm{y}^{2}(x-2)=x^{2}(1+x)$ hos
(a) An asymptote parallel
(b) an asymptote parallel to y - axis
(b) asymptotes parallel tobothayes
(d) no asymptotes
25. $\int_{0}^{\infty} x^{5} e^{-4 x} \mathrm{dx}$ is
(a) $\frac{6!}{4^{6}}$
(c) ${ }^{46}$
(d) $\frac{5!}{4^{5}}$
26. The area between theelifpse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and its auxillary circle is
(a) $\pi b(a-b)$
(b) $2=a(a-b)$
(c) $\pi a(a-b)$
(d) $2 \pi b(a-b)$
27. The lengtinf the@urve $\frac{x^{2}}{3}+\frac{y^{2}}{3}=4$ is
(a) 48
(b) 24
(c) 12
(d) 96
28. The areabdunded by the curve $x=g(y)$ to the right of $y-a x i s$ and two the lines y $=\cos \mathrm{y}=\mathrm{d}$ is given by
(a) $\frac{0}{x} d y$
(b) $\int_{a}^{c} x d y$
(d) $\int_{c}^{d} y d y$
(d) $\int_{c}^{d} x d y$
(a) $p \rightarrow q$
(b) $q \rightarrow p$
(c) $(\mathrm{p} \rightarrow \mathrm{q}) \vee(\mathrm{q} \rightarrow \mathrm{p})$
(d) $(\mathrm{p} \rightarrow q) \wedge(\mathrm{q} \rightarrow \mathrm{p})$

3a The order of [7] in $\left(z_{9},+_{9}\right)$ is
(a) 9
(b) 6
(c) 3
(d) 1
31. In the group $(G,) G=.\{1,-1, i,-i\}$ order of $-i$ is
(a) 2
(b) 0
(c) 4
(d) 3
32. The set of positive even integers, with usual multiplication forms
(a) A finite number (b) only a semi group (c) only a monoid group
33. In a Poisson distribution $P(X=0)=k$ then the variance is
(a) $\log \frac{1}{k}$
(b) $\log k$
(c) e^{λ}
(d) $\frac{1}{k}$
34. A box contains 6 red and 4 white balls. If 3 balls are drawn at random the probability of getting 2 white balls without replacement is
(a) $\frac{1}{20}$
(b) $\frac{18}{125}$
(c) $\frac{4}{25}$
(d) $\frac{3}{10}$
35. For a standard normal distribution the mean and variance
(a) μ, σ^{2}
(b) μ, σ
(c) 0,1
(d) 1,1 (d) an infinitef
\bigcirc 36. The distribution function $F(x)$ of a random variable
(a) A decreasing function (b) a non-decreasing function (o) constant function
(c) increasing first and then decreasing
37. Solution of $\frac{d x}{d y}+\mathrm{mx}=0$ where $\mathrm{m}<0$ is
(a) $x=c e^{m y}$
(b) $x=c e^{-m y}$
(c) $x=r \pi y$

38. A particular integral of $\left(\mathrm{D}^{2}-4 \mathrm{D}+4\right) y=\alpha^{2 x}$ is
(a) $\frac{x^{2}}{2} e^{2 x}$
(b) $x^{2} e^{2 x}$
(c) $x e^{2 x}$
39. The order and degree of the differentianequqtion $y^{\prime}+\left(y^{\prime \prime}\right)^{2}=\left(x+y^{\prime \prime}\right)^{2}$
(a) 1,1
(b) 1,2
(c) 2,1
(d) 2,2
40. If $\cos x$ is an integrating factor of he differential equation $\frac{d y}{d x}+P y=Q$ then P
(a) $-\cot x$
(b) \cot (c) $\tan x$
(d) $-\tan x$

SECTION -B

$10 \times 6=60$
(i) Answer any 1 (questions. (ii) Question no. 55 is compulsory and chooseany 9 questions from the remaining. (iii) Each question carries 6 marks.
41. Solve by matrix determinant method $x+y+2 z=4,2 x+2 y+4 z=8$, $3 x+3 y+6 z=19$
42. (i) Find the value or $\lambda /$ if the points $(3,2,-4),(9,8,-10)$ and $(\lambda, 4,-6)$ are collinear.
(ii) For an 夕 recto \vec{r} prove that $\vec{r}=(\vec{r} \cdot \vec{\imath}) \vec{\imath}+(\vec{r} \cdot \vec{\jmath}) \vec{\jmath}+(\vec{r} \cdot \vec{k}) \vec{k}$
43. Show that that lines $\vec{r}=(\vec{\imath}-j)+\mathrm{t}(2 \vec{\imath}+\vec{k})$ and $\vec{r}=(2 \vec{\imath}-j)+\mathrm{s}(\vec{\imath}+\vec{\jmath}-\vec{k})$ are skew fines find the distance between them.
44. Firfothe square root of $(-8-6 i)$
45. Aeqrethat $(1+i)^{\mathrm{n}}+(1-i)^{\mathrm{n}}=2^{\frac{n+2}{2}} \cos \frac{n \pi}{4}, \mathrm{n} \in \mathrm{N}$
46. Fined the equation of the hyperbola if the asymptotes are $2 x+3 y-8=0$ and $3 x-2 y$ $+1=0$ and $(5,3)$ is a point on the hyperbola.
A. Obtain the Maclaurin's series for $\log _{e}(1+x)$
48. Find the absolute maximum and minimum values of the function $f(x)=x^{3}-3 x^{2}+$ $1,-\frac{1}{2} \leq x \leq 4$
49. If $\mathrm{w}=x+2 \mathrm{y}+\mathrm{z}^{2}$ and $x=\cos t ; \mathrm{y}=\sin t ; \mathrm{z}=t$. Find $\frac{d w}{d t}$
50. Evaluate $\int_{0}^{3} \frac{\sqrt{x} d x}{\sqrt{x}+\sqrt{3-x}}$
51. Solve $D^{2} y=-9 \sin 3 x$
52. Show that $\sim(p \vee q) \equiv((\sim p) \wedge(\sim q))$
53. (i) Prove that identity element of a group is unique.
(ii) Show that $\left(a^{-1}\right)^{-1}=a \forall a \in \mathrm{G}$, in a group G .

54. A discrete random variable Xhas the following probability disheributiofs.

X	0	1	2	3	4	5	6	7	8
$\mathrm{P}(x)$	a	$3 a$	$5 a$	$7 a$	$9 a$	$1 a$	13	$15 a$	$17 a$

(i) Find the value of a (ii) Find $\mathrm{P}(x<3)$ (iii) Finc $\mathrm{R}(3<x<7)$
55. (a) 20% of the bolts produced in a factory are found to be defective. Find the probability that in a sample of 10 bolts chosen at ringongeactly 2 will defective using (i) Binomial distribution (ii) Poisson distaputian) $\left.e^{-2}=0.1353\right]$ [OR]
(b) For $\mathrm{A}=\left[\begin{array}{crr}-1 & 2 & -2 \\ 4 & -3 & 4 \\ 4 & -4 & 5\end{array}\right]$, showthat for inverse of matrices.
$10 \times 10=100$
(i) Answer any 10 questions, (ii Question no. 70 is compulsory and choose any 9 question from the remaining. (iii) Each question carries 10 marks.
56. Discuss the solutions of the reten of equations for all values of λ.
$x+y+z=2, \quad 2 x+y-2 z=2, \quad \lambda x+y+4 z=2$
57. Prove that $\cos (A+B) A x-\operatorname{Bin} A \sin B$
58. Find the vector and Caktestan equations of the plane passing through the points $(-1,1,1)$ and $(1,-1,1)$ and perpendicular tothe plane $x+2 y+2 z=5$
59. The ceiling in ahallway 28 ft wide is in the shape of a semi ellipse and 18 ft high at the centre. Find he herght of the ceiling 4 feet from either wall if the height of the side walls is 12 ft .
60. Find the edentricity, centre, foci and vertices of the hyperbola9 $x^{2}-16 y^{2}+36 x+$ $32 y+164=9$ and also trace the curve.
61. Find the seprate equations of the asymptotes of the hyperbola $3 x^{2}-5 x y-2 y^{2}+17 x+y+14=0$
62. Phor that the sum of the intercepts on the co-ordinate axes of any tangent to the curen $=a \cos ^{4}, y=a \sin ^{4} \theta, 0 \leq \theta \leq \frac{\pi}{2}$ is equal to a.
03. Stron that the volume of the largest right circular cone that can be inscribed in a sphere of radius a is $\frac{8}{27}$ (volume of the sphere)
64. Use differentials to find an approximate value for the given number $y=\sqrt[3]{1.02}-\sqrt[4]{1.02}$
65. Show that the surface area of the solid obtained by revolving the arc of the cur $y=\sin x$ from $x=0$ and $x=\pi$ about x - axis is $2 \pi[\sqrt{2}+\log (1+\sqrt{2})]$
66. Find the common area enclosed by the parabola $4 y^{2}=9 x$ and $3 x^{2}=16 y$
67. Show that the set G of all positive rationalsforms a group under the composition defined by $a * b=\frac{a b}{3}$ for all $a, b \in \mathrm{G}$
68. The sum of Rs. 1000 is compound continuously, the nominal rate of citerest being four percent per annum. In how many years will the amount Pb twice the original principal? $\left(\log _{\mathrm{e}} 2=0.6931\right)$
69. Find c, μ and σ^{2} of the normal distribution whose probability function is given by $f(x)=c e^{-x^{2}+3 x},-\infty<X<\infty$
70. (a) P represents the variable complex number z. Find the locus of P, if

$$
\operatorname{Im}\left[\frac{2 z+1}{i z+1}\right]=-2 \quad[\mathbf{O R}]
$$

(b) Solve $\left(\mathrm{D}^{2}-6 \mathrm{D}+9\right)=x+e^{2 x}$

Prepared by
Thagadur .C. ANBU M.Sc., M.Phil.,B Genius Tuition centre, 72, Sanganoor road, Ganapathy ,
Coimbatore - 641006

